Nonhydrodynamic modes and a priori construction of shallow water lattice Boltzmann equations.
نویسنده
چکیده
Lattice Boltzmann equations for the isothermal Navier-Stokes equations have been constructed systematically using a truncated moment expansion of the equilibrium distribution function from continuum kinetic theory. Applied to the shallow water equations, with its different equation of state, the same approach yields discrete equilibria that are subject to a grid scale computational instability. Different and stable equilibria were previously constructed by Salmon [J. Marine Res. 57, 503 (1999)]. The two sets of equilibria differ through a nonhydrodynamic or "ghost" mode that has no direct effect on the hydrodynamic behavior derived in the slowly varying limit. However, Salmon's equilibria eliminate a coupling between hydrodynamic and ghost modes, one that leads to instability with a growth rate increasing with wave number. Previous work has usually assumed that truncated moment expansions lead to stable schemes. Such instabilities have implications for lattice Boltzmann equations that simulate other nonideal equations of state, or that simulate fully compressible, nonisothermal fluids using additional particles.
منابع مشابه
Lattice Boltzmann Method Application on Headwater at Lata Kinjang Waterfall, Malaysia
Headwater accident is a natural phenomenon that occurs in every flow channel, resulting in tremendous incidents that involve vulnerable lives and destruction of its surroundings. This study focuses on simulation of potential headwater accidents at Lata Kinjang waterfall (Perak, Malaysia) with the aim of understanding the behavior of headwater accidents from the hydraulic aspect. By deploying th...
متن کاملIncompressible limits of lattice Boltzmann equations using multiple relaxation times
Lattice Boltzmann equations using multiple relaxation times are intended to be more stable than those using a single relaxation time. The additional relaxation times may be adjusted to suppress non-hydrodynamic modes that do not appear directly in the continuum equations, but may contribute to instabilities on the grid scale. If these relaxation times are fixed in lattice units, as in previous ...
متن کاملNumerical simulation of mixed convection heat transfer of nanofluid in an inclined enclosure by applying LBM
Mixed convection of Cu-Water nanofluid is studied numerically in a shallow inclined enclosure by applying lattice Boltzmann method. The D2Q9 lattice and internal energy distribution function based on the BGK collision operator are used in order to develop the thermal flow field. The enclosure's hot lid has the constant velocity of U0 while its cold lower wall has no motion. Moreover, sidewalls ...
متن کاملLattice Boltzmann method for 2D flows in curvilinear coordinates
In order to improve efficiency and accuracy, while maintaining an ease of modeling flows with the lattice Boltzmann approach in domains having complex geometry, a method for modeling equations of 2D flow in curvilinear coordinates has been developed. Both the transformed shallow water equations and the transformed 2D Navier-Stokes equations in the horizontal plane were synchronized with the equ...
متن کاملThe lattice Boltzmann method as a basis for ocean circulation modeling
We construct a lattice Boltzmann model of a single-layer, ‘‘reduced gravity’’ ocean in a square basin, with shallow water or planetary geostrophic dynamics, and boundary conditions of no slip or no stress.When the volume of the moving upper layer is sufficientlysmall, the motionless lower layer outcrops over a broad area of the northern wind gyre, and the pattern of separated and isolated weste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 65 3 Pt 2B شماره
صفحات -
تاریخ انتشار 2002